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EDMI Microsystems and Microelectronics

MICRO-614: Electrochemical Nano-Bio-Sensing
and Bio/CMOS interfaces

Lecture #4

Probe Detection Principles
(DNA, Antibodies & Oxidases)

(c) S.Carrara



Lecture Outline

(Book Bio/CMOS: Chapter’ paragraphs §6.1-4 & 8.1)

DNA hybridization at Bio/CMOS
interface

Layering effects with DNA or
Antibodies

Helmholtz Planes & Debye Length
Oxidases based principle of detection
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CMOS/Sample interface
_ - -
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The interface between the CMOS circuit and the bio-
sample needs to be deeply investigated and organized
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The Iinteraction IgG-Ag

Antigen

1IgG Antibody

<

The antigen rests in a very tight binding pocket which 1s exactly the right size and
shape to receive it. Other important factors include enthalpic contributions from
van der Waals interactions and hydrogen bonds, and entropic contributions from

¢ release oI bound water upon antigen binding
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Measuring Bio-Markers

The Measure of Bio-markers may be performed in a
labeled manner or in label-free mode
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Antibody-Antigen up-take
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Antigens are specific detected by

immobilizing the right antibodies
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DNA hybridization
onto solid subsira

DNA specific detection by immobilizing
the right ssDNA sequence
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CMOS/Sample interface
_ - -

Rl S 2

ect' Signals?
How to get direct signals of probe/target interactions in
case of antibodies or ssDNA probes?
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Charged Residues Neg. Charged
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The charges of an Antibody
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The crystallographic structure of an antibody
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Capacitive detection

Charged residues of the antibody may affect charge
carriers 1n the electrode

(c) S.Carrara
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Cancer Detection by capacitance
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Equivalent
Capacitances

Schematic of the capacitive detection principle
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Specificity of the Surface

Antigens are specific detected by

immobilizing the right antibodies
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Specificity of the Surface

Antibody are specific but the resulting

surface might not be specific enough
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Specificity of the Surface

Blocking agents are used

to improve surface specificity
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DNA probe and
target hybridized
on a solid
substrate

1% 5'end

@ﬁ%

DNA Target
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3' end

5'end
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3 end

DNA Probe
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Hybridization degree of DNA

Duplex AG [kJ/mol]
GGTTATTGG 6.8
CCAATAACC
GGTTATTGG 12.0
CCAAAAACC
GGTTCTTGG 124
CCAATAACC

Gibbs free energies of different
matching/nonmatching duplexes
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DNA probe and hybridized
probe/target on a solid substrate and
the related solution ions distributions
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Electrochemical Interface
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POSITION

Ion planes are formed at the interface when
electrodes immersed in solution are polarized
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Electrochemical Interface

e

Ion planes are formed at the interface when
electrodes immersed in solution are polarized
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The Capacitance DNA Detection

ELECTRODE

Applied
voltage
(e.g. V<0)
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DNA molecules

ELECTRODE

' lons
displacement

Unlabeled ssDNA may be detected with capacitance

measurements as due to charge displacement
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Equivalent Circuit with
Layering effects

Capacitance for layering-effects
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Electrode resistance
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Equivalent C of sensing electrodes
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Fig. 9. Measured capacitance versus charge/discharge frequency on clean
gold electrodes. The continuous line shows the fitting.

STAGNI et al-: FULLY ELECTRONIC LABEL-FREE DNA SENSOR CHIP IEEE SENSORS JOURNAL, VOL. 7, NO. 4. APRIL 2007

The equivalent capacitance of Helmholtz 1on planes on bare
electrodes 1s frequency-dependent
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How to understand the reason
of the time instability?

600 - Targets and probes
500 hybridized onto Gold cre
400 - \
£ electrodes Ry L
. *HHMLH%
100 A
0 . T T
0.01 0.1 1 0 5 1
Frequency [KHz] CPE Cp {j ﬂ}}a‘

CPE parameters | Bare electrode | DNA Probes | DNA Target \
R(GQ) 45 177 177
X(GQ) 123 837 970 D E—

S.Carrara et al., Sensors and Transducer Jowrnal 76 (2007) 969-977

Charge transfer pathways through the DNA layer affect the ideal

Capacitance behavior of the interface with the solution sample
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Equivalent circuits
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Equivalent circuits of DNA B1o/CMOS interface
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Helmholtz Planes
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Debye Length

Charge density: p, = Z Z,en,

z; = charge of species i (e.g. +2, -1, etc.)

n; = concentration of species i (number per volume)

V¢ =0 In the bulk

P.

Close to electrodes

2
Vi =-
For perturbation away from equilibrium at finite temperature

Zie¢?
kT

A

¢=0-9, P. = ZzieniO exp[—
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Debye Length
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Debye Length
Debye Length [nm] = (L +Lo+Lp)3

\‘ So, the potential from walls (or small charged objects) is almost
completely screened over a distance ~ 3 A,

I| In pure water (pH = 7), screening just from H* and OH" in equilibrium.
\ At room temperature, A ~ 1 micron.

In 1 M KCl in water, Ay ~ 0.3 nm.

\ Remember, K for water at low frequencies is ~ 80.

. It also defines the thickness
T — of the diffuse layer Ly

L C [M]

The Bebye Length 1s defined as the region of
charge carrier's net electrostatic effect in solution
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Enzymes’ based detection

Some enzymes provide redox reactions in
catalysing their substrates. In the case of these
enzymes, we can exploit their catalysis for the

aim of an electrochemical direct detection.

That’s the case of both oxidases and
cytochromes.
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Redox with oxidases

The typical redox involving an oxidase is as follows:

XOD/FAD + X — XOD /FADH, + X,

The FAD (Flavin Adenine Dinucleotide) 1s a functional part of
the protein that gains a hydrogen molecule after the reaction.
Therefore, the oxidase 1s not yet ready for another transformation
because the FAD has gained the H,. To return to its initial state,
the enzyme needs to release that hydrogen molecule:

XOD /FADH, + 0, . XOD /FAD
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Redox with oxidases

The hydrogen peroxide provide two possible redox reactions. An

oxidation:
650mV
H,0, 23" 2H+ + 0,

And a reduction:

H,0, + 2H* +(2¢7 22" 01,0

A third redox is provided by the oxygen reduction:

<700 mV
0,+4H" +{3 ¢ )~ 2H,0

(c) S.Carrara
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Oxidases working principle
~ 4.6 nm

Lactate, or Glucose, or Cholelzigggﬁt.

O
xygen . . .

Hydrogen peroxide .
Oxidase

Amperometric
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Enzymes’ based detection

Other enzymes do not provide any redox reaction
in catalysing their substrates However, some of
them may be used together with enzyme that do 1t.
In the case, we can exploit their catalysis for the
aim of an electrochemical direct detection by
combining two different kind of enzymes on the
same B1o/CMOS interface. That 1s the case of the
detection of ATP
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ATP detection

D-glucose-6-P D-gluconic
‘ ATP  D-glucose  Acid s-lactone

‘ . o .

GHK GOD/FAD

H,O 0\H20%%
26
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Detection Principle
* Sensitivity: example — A linear sensor

1.2 - S=AI/AC=0.6 yA/80 uM
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Detection Principle

* Detection Limit: a graphic interpretation
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